《乘法分配律》教学反思8篇
教学反思需要教师具备客观、细致的观察力和分析能力,同时要有开放的心态和接受反馈的勇气,以便真实地识别和面对教学中的问题。收集并整理相关信息和数据,从中获取有价值的教学反馈。现在随着小编一起往下看看《乘法分配律》教学反思,希望你喜欢。
《乘法分配律》教学反思篇1
本节课主要让学生充分感知并归纳乘法分配律,理解其意义。教学中,我从解决实际问题(买衣服)引入,通过交流两种解法,把两个算式写成一个等式,并找出它们的联系。让学生初步感知乘法分配律的基础上再让学生举出几组类似的算式,通过计算得出等式。
在充分感知的基础上引导学生比较这几组等式,发现有什么规律?
这里我化了一些时间,我发现学生在用语言文字叙述方面有些困难,新教材上也没有要求,因此,只要学生意思说到即可,后来,我提了这样一个问题,你能用自己喜欢的方式来表示你发现的规律吗?学生立即活跃起来,纷纷用自己喜欢的方式来阐明自己发现的规律:有用字母的,有用符号的,大部分学生会说,没问题。对于应用这一乘法分配律进行后面的练习还可以。
如:书上第55页的`第5题,学生都想到用简便方法去列式计算。整节课,学生还是学的比较轻松的。
《乘法分配律》教学反思篇2
关于乘法分配律早在上学期和本册教材的前几个单元的练习题中就有所渗透,虽然在当时没有揭示,但学生已经从乘法的意义角度初步进行了感知,以及初步体会了它可以使计算简便。今天的教学就建立在这样的基础之上,上午第一节课我在自己班上,后来第二节课去听了一根木头老师的课,现在进行对比,谈一谈自己的感受:
首先,值得向一根木头老师学习的是,学生的预习工作很到位。课前,学生就已经解决了“想想做做”第3、4题,学生通过解决第三题用两种方法求长方形的周长,既巩固了旧知,而且将原来的认识提升了,从解决实际问题的角度进一步感受了乘法分配律。而第4题通过计算比较,突现了乘法分配律可以使计算简便,体现了应用价值。我在课前没有安排这样的预习,因此课上的时间比较仓促。好好文库整理 HaoHaowenkU.coM
其次,我在学生解决完例题的问题后,还让学生提了减法的'问题,这样做的目的是让学生初步感受对于(a—b)×c=a×b—a×c这种类型的题也同样适合,既扩展了学生的知识面,同时又为明天学习简便运算铺垫。
最后,我觉得在指导学生在观察比较65×5+45×5和(65+45)×5的联系和区别时,可以指导学生从数和运算符号两个角度观察,学生得出结论后,其实已经感知到了算式的特点,然后让学生用自己的方式创造相同类型的等式,可以是数、字母、图形的等,值得欣慰的是学生能用各种方式正确表示出来,然后再揭示数学语言,学生的认知产生飞跃。
不足的是,学生很难用自己的语言表达乘法分配律的含义,小组交流时,有些同写还是充当旁观者的角色,有待于教师科学地引导。
《乘法分配律》教学反思篇3
师:(出示挂图)仔细观察,从图中你获得哪些信息?
买这些衣服,戚老师一共要付多少元呢?你能用两种方法列出综合算式吗?
生:(65+35)×12=1200(元)
生:65×12+35×12=1200(元)
师:每个算式的结果都是1200元,那么这两个算式有什么关系?
生:(65+35)×12=65×12+35×12
师:刚才我们是通过计算发现两个算式相等的,大家能根据题意说说两个算式为什么相等吗?
(学生小组讨论)
师:指名学生回答。
生:一件上衣和一条裤子合起来叫一套衣服,就是65元和35元的和,买12套衣服的价钱就是12个65元和12个35元的和;每件上衣65元,12件上衣的价钱就是12个65元,每条裤子35元,12条裤子就是12个35元,合起来也是12套衣服的价钱,所以(65+35)×12=65×12+35×12。
师:说得真棒,谁能概括地说一说。
生:12个65加12个35等于12个65与35的和。
师:请同桌互相说一遍。
师:照这样,你能再写出几组这样的等式吗?(学生独立思考。)
(过一会儿,一只只小手举起来了,教师指名回答。)
生1:(15+25)×8=15×8+25×8。
生2:a×(5+2)=a×5+a×2。
生3:(+▲)×■=×■+▲×■。
……
师:同桌检查一下,对方写的等式两边是否相等?
师:同学们仔细观察,对比上面的等式左右两边的式子有什么特征?你从中发现什么规律?小组内的同学可以互相商量、讨论。
生1:我们小组发现:等号左边的式子不是两个数的和乘一个数就是一个数乘两个数的和,等右左边的式子都是括号内的两个数与括号外的那个数相乘,最后把两个积相加起来。
生2:我们小组从乘法的意义理解发现:比如(15+25)×8=()×8+(
)×8。因为15和25的和等于40,左边的式子可以理解为40个8,右边的式子可以理解为15个8加25个8一共是40个8,所以40个8等于15个8加25个8。
……
师;同学们刚才观察非常仔细,都代表本组讲出了你们发现的规律。
师:像(65+35)×12=65×12+35×12这样的等式,你能写出多少个?
生:无数个。
师:你们能不能像乘法交换律和乘法结合律那样也用一个字母式子来表示呢?
学生尝试用字母表示乘法分配律,教师巡视。
生:a×(5+2)=a×5+a×2。
生:(+▲)×■=×■+▲×■
生(a+b)×c=a×c+b×c。
……
师:你们真棒!今天我们发现的规律就是乘
法分配律。乘法分配律常表示为(a+b)×c=a×c+b×c。
你们能用自己的话说说什么是乘法分配律吗?
指名学生回答。
师小结:两个数的和乘第三个数,可以把两个数分别和第三个数相乘,再求和。
教后反思:
1、关注学生已有的知识经验
以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,为学生创设了与生活环境、知识背景密切相关的感兴趣的学习情境,通过两种算式的比较,唤醒了学生已有的知识经验,使学生初步感知乘法分配律。让学生始终处于主动探索知识的最佳状态,促使学生对原有知识进行更新、深化、突破、超越。
2、提供自主探索的机会
一堂数学课可以有不同种教法,怎样教才能在数学活动中培养学生的创新能力呢?我觉得,最重要的是保证学生的主体地位,提供自主探索的机会。在探索乘法运算律的过程中,提出的问题有易到难,层层递进,不仅为学生提供了自主探索的时间和空间,使学生经历乘法运算律的产生和形成过程,而且让学生发现其中的数学规律与奥秘,从而激发学生对数学深层次的热爱。
在日常生活中,数学真是无处不在,处处留心皆学问。如果学生们能处处留心数学问题,并运用数学知识去解决这些实际问题;能够在认真观察的基础上,根据数字的特点,灵活地选择运算定律,找到适合自己的最佳的简算方法,那么自己的教学就成功了。尽管在课堂上也许还不能够全部掌握简算的知识,只要在日常的学习和生活计算的过程中,能够学会善于观察,自觉运用,就能达到熟能生巧的效果,学习成绩与学习能力也会有很大程度的提升。
《乘法分配律》教学反思篇4
乘法的分配律学生在本册书中是接触过的。譬如第42页的应用题第7题,其中就渗透了乘法的分配律。在数学一课一练上也有过这种类似的形式。以前在讲的时候是从乘法的意义上来帮助学生理解。
一、抓住重点。让学生理解乘法分配律的意义。
在教学时,我是按照如上的步骤进行教学的。可是在我引导学生把算式写成等式的时候让学生观察左右两边算式之间的联系与区别之后,学生就根本不知道从何下手。在他们的印象中,联系就是根据乘法的意义来进行联系。根本没有从数字上面去进行分析。可以说,局限在原先的思维中,而没有跳出来看。而让学生写出几组算式后,观察分析几组等式左右两边的区别之后,学生也还是无法用语言来表达这一规律。场面一时之间很冷,后来我只好直接让学生用字母来表示,变化为这样的形式之后,有很多的学生都能够写出来。
我不明白这是为什么,时间我给了,小组也交流了,在小组交流时我已经发现我们班上的学生根本无法发现其中的规律,所以也根本无法用语言来进行表达。难道是坡度给得不够吗?还是平时的教学中出现了问题。这些都要一一地去分析。
二、考虑学生的学习情况,尊重他们的主观感受。
在引导学生把两道算式拼成一道等式之后,我让学生交流,结果学生给出了两种(65+45)×5=65×5+45×5.和65×5+45×5=(65+45)×5。我把这两种方式都板书上黑板上。教材上要求的是第一种,即把(65+45)×5写在等式的左边,是为了方便学生对乘法分配律的意义的理解。我认为,从乘法的意义这个角度上来说,意义的理解我们班级可以做到。既然是从意义出发,那么两种方式其实都是可以的。所以在用字母来表达时,我们班的同学也有了两种的表达方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。
三、练习中注意乘法分配律的变式。
乘法分配律的意义是用,是为了计算的简便。所以,在练习中我注意让学生说清楚怎么使用的。尤其是想想做做第2题中的74×(20+1) 和74×20+74.一定要学生说清楚括号中的1是从哪儿来的。但是简便的思想渗透得还很不够。学生在完成想想做做第5题的时候,一大半的学生都没有采用简算的方法。哪怕他们在经过了第四题的练习时也是一样。
今天教学了运算律——乘法分配律,对于例题的解决,学生能列出不同的算式,45__5+65__5和(45+65)__5,通过各自的计算得出计算结果相同,然后把这两条算式写成等式45__5+65__5=(45+65)__5,学生还能用自己的语言表述自己对等式的理解:45个5加65个5也就是(45+65)个5,然后又让学生再仿写了几个算式后让学生观察等式总结自己的发现,学生会用字母表示出这一规律,但用语言表述有困难了。
《乘法分配律》教学反思篇5
乘法分配律是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学生较难理解与叙述的定律。如何教学能使学生较好的理解乘法分配律的内涵,并能正确的运用定律进行简便运算呢?我做了一下几点尝试。
一、创设师生竞赛,激发学习欲望。
上课教师先出示:
(1)8×(125+11)
(2)(100+1)×23
(3 )648×5+352×5
老师和同学们做一个比赛,王老师口算,你们用计算器算,看看谁能获。
结果教师又快又对,学生都很奇怪,教师顺势导入:同学们都特别想知道在比赛过程中,学生用计算器都没有老师口算得快的原因吗?是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?今天我们就来探究其中的奥秘。
这样的导入让学生充满了求知的欲望,激发了学习的热情。
二、设计思考问题,学生自主探究。
出示例题后,学生独立解答,然后教师出示思考问题,学生自主探究。
讨论:
1、这两种方法有什么不同?两个算式的结果如何?用什么符号连接?
2、那么等号连接的这两个算式有什么特点和联系呢?请同学们带着老师给出的三个问题展开讨论。(课件出示问题)生A:我发现左边括号外的那个数,写到右边都要乘两次。
生B:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
整个教学过程通过学生观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。
三、练习有坡度,前后有呼应。
在本课的练习设计上,我力求有针对性,有坡度,同时也注意知识的延伸。练习的形式多样,课本上的填空题解决以后,设计了判断题和练习题,把学生易出错的问题提前预设好,而且通过练习让学生明白乘法分配律也可以两个数的差,也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为后面利用乘法分配律进行简算打下伏笔。为了让学生初步感受乘法分配律能使一些计算简便,我特意把开始和老师比赛的题目让学生运用今天所学知识进行计算,学生非常有兴趣,在练习中培养了学生分析、推理、概括的'思维能力。
总之,在本堂课中新的教学理念有所体现,是一节本色的数学课堂。但在具体的操作中还缺乏成熟的思考,自主探究环节对问题的设计不够简洁,还可以再做斟酌。实际分配律的揭示过程与教案设计顺序有些出入,感觉效果没有预想的好,上课时对于教案的熟悉程度还有待加强。
《乘法分配律》教学反思篇6
乘法分配律是小学阶段学生比较难理解与叙述的运算定律,但的确又非常重要、运用广泛。在本节教学过程的设计上我采用了让孩子通过“联系实际、感知建模;分类整理,生成模型;发现规律,举例验证;表示规律,建构模型;概括规律,完善模型;应用规律,感受模型”的探索过程,完成本节的教学任务。
在教学过程中,以突破乘法分配律的教学重点和难点为切入点,对本节课知识的学习起到了举足轻重的作用。根据自己的教学教训,在平常的教学中,总是发现学生在学习完乘法分配律之后容易出现(a+b)×c=a×c+b的现象仔细研究其原因,其实是学生学的记的只是乘法分配律的外在形式,对公式只不过是表面肤浅的忘记,而没有真正理解乘法分配律内在的数学意义。因此,我就打破通过观察 发现 猜想 验证 概括的传统教学思路,除了在外在形式上认识规律(教材意图),又从乘法的意义入手,使学生进一步从算式意义方面得出了(a+b)×c=a×b+b×c这样确凿无疑的结论。让学生对乘法分配律的理解不再只是停留在外在的“形”,而是又进入“质”的深化。这种教学建立在学生认知规律的基础之上,实现了有效的建立模型突破了本节的第一个难点。从课后作业可以看出,这种教学效果明显好于以前。
在突破本节第二个难点:乘法分配律容易跟乘法结合律混淆的现象时。敢于挑战自我,不再泛泛地讲两个规律的区别与联系,而采用反式教学写出25×(4×8)=25×4+25×8的现象,让学生既懂得乘法结合律和分配律的区别,又找到了乘法分配律概念的重点。
在本节课的练习设计上,力求有针对性、有坡度的知识延伸,出示扩展型的练习,对分配律的概念加以升华。
这些方面,只是我对自己原来的教学在反思与对比中觉得是对我而言较为进步的一点点。但是,在实际的课堂操作中,整个教学过程也出现了许多不尽人意的地方。
比如:课堂上由于紧强导致只顾自己思路,而忘了对学生的回答或知识的恰当与否做出及时评定。还有,恐怕在规定时间内完不成任务,而把“总结”与“拓展”放错了位置;学生参与的积极性没有预想中那么高,可能与我相对缺乏激励性语言有关等等问题。
深入思考,觉得还是自己的业务不够熟练,驾驭课堂能力低下而造成的。因此,我想:今后要从以下几方面努力:
一、深入钻研,在挖掘教材上下功夫。
二、多听课,学习别人长处,多查阅资料学习,提高自己的业务水平。
最重要的是更新教学理念,在教学思路的“创新”上狠下功夫,让学生看到的天天都是“新”老师,甚至忘记“传统”形象,这是我最高的追求目标。
《乘法分配律》教学反思篇7
乘法分配律是教学的难点也是重点。这节课采用从生活中的问题入手,利用学生感兴趣的具体情境展开。这节课我力图将教学生学会知识,变为指导学生会学知识,将重视结论的记忆变为重视学生获取结论的体验和感悟,将模仿式的学习变为探究式的学习。学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成过程。这样不仅让学生获得了数学基础知识和基本技能,而且更能培养学生主动探究、发现知识的能力。回顾整个教学过程,这节课的亮点体现在以下几个方面:
一、从身边引入熟悉的生活问题,激趣探究
我们在教学中要为学生创设大量生动、具体、鲜活的生活情境,让学生感到数学就是从身边的生活中来的,激发学生学习的热情。在教学时,我先创设情景,提出问题:“一共有多少名学生参加这次植树活动?”。让学生根据提供的条件,用不同的方法解决,从而发现(4+2)×25=4×25+2×25这个等式。然后请学生观察,这个等式两边的运算顺序,使学生初步感知“乘法分配律”。再让学生“观察这个等式左右两边的不同之处”,再次感知“乘法分配律”。我利用情景,让学生充分的感知“乘法分配律”,为后来“乘法分配律”的探究提供了有力的保障。
二、为学生提供了自己独立探究的机会
数学教学应该是数学教学的活动。传统的教学活动往往只重视结论的记忆,而这节课我把学生的活动定位在感悟和体验上,引导学生用数学思维方式去发现,去探索。尤其是在学生初步感悟到两种算法相等关系的基础上,继续为学生创造一个思考的情景。我要求学生观察得到的两个等式,提出“你有什么发现?”。此时学生对“乘法分配律”已有了自己的一点点感知,我马上要求学生模仿等式,自己再写几个类似的等式。使学生自己的模仿中,自然而然地完成猜测与验证,形成比较“模糊”的认识。
三、为学生的学习方式的转变创设了条件
模仿学习,学生“知其然,而不知其所以然”,知识容易遗忘,而且不能灵活应用。改变学生的学习方式,让学生进行探索性的学习,不能是一句空话。在这节课上,我抓住学生的已有感知,立刻提出“观察这一组等式,你能发现其中的奥秘吗?”。这样,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的主动权力还给学生。学生的学习热情高了,自然激起了探究的火花。学生的学习方式不再是单一的、枯燥的,整个教学过程都采用了让学生观察思考、自主探究、合作交流的学习方式。我想:只有改变学习方式,才能提高学生发现问题、分析问题和解决问题的能力。
《乘法分配律》教学反思篇8
①1355+5587=55(13+87)=5513+5587
②8(125+9)=8125+9
③(100-7)25=10025+725
④9947=(100-1)47=10047-1
⑤35201=35(201-1)
⑥79125=125(80-1)=12580+1251
⑦79125=125(80-1)=12580-1
⑧1252532=1258+425
⑨88125=808125
⑩24335=(245)33=10033
学生对于乘法分配律和结合律极容易混淆,而且符号容易抄错。针对这些情况,在教学中应该注意什么呢?
1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。
教学时我们往往注重等式两边的外形特点,即a(b+c)=ab+ac缺乏从乘法意义角度的理解。这时教师可提出为什么两个算式是相等的?这里不仅从解题的角度理解,如(2+7)3=23+73是相等的,还有从乘法的意义的角度理解,即左边表示出3个9,右边也表示出3个9,所以(2+7)3=23+73
2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。
乘法结合律的特征是几个数连乘,而乘法分配律的特征是两个数的和乘一个数或两个积的和。在练习题中(40+4)25与(404)25这种题学生特别容易出错。为了更好地掌握,可多进行一些对比练习,如进行题组对比25(8+4)和2584;25125254和25125+258;每组算式有什么特征和区别?符合什么运算定律?应用什么运算定律可以使计算简便?为什么要这样算?
3、让学生进行一题多解的练习,加深对乘法结合律和乘法分配律的理解
如:12588;10189你能有几种方法?12588
①竖式计算
②125811
③125(80+8)
④(100+25)88等等。
10189
①竖式计算
②(100+1)89
③101(100-1)
④101(80+9)
⑤101(90-1)等.
对于不同解法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?力争达到用简便计算法进行计算成为学生一种自主行为,并能根据题目的特色灵活选择适当的算法的目的.
4、多练
针对题目多次练习。练习时注意练习量和时间的安排。刚开始可以天天练习,过段时间以后可以一两天练习一次,再到一周练习一次,典型题型课选择(40+4)25;(404)25;6325+6375;65103-653;5699+66;48102;4899等。
对于比较特殊的题目可以间断性练习,对优生提出掌握的要求,如:3698+72;6825+68+6874;3212525等。
只有在理解的基础上反复练习,才能使孩子对于乘法分配律牢固掌握,我将在反思过程中制定出切实可行的计划,尽快使孩子消化吸收。