当前位置:好好文库范文大全内容页

一元二次方程数学教案

2024-06-06 10:39:01互联网范文大全手机版

一元二次方程数学教案优秀5篇

好好文库小编精心整理一元二次方程数学教案,希望这份一元二次方程数学教案优秀5篇能够帮助大家,给予大家在写作上的思路。更多一元二次方程数学教案资料,在搜索框搜索

一元二次方程数学教案【篇1】

学习目标:

1、使学生会用列一元二次方程的方法解决有关增长率的应用题;

2、进一步培养学生分析问题、解决问题的能力。

学习重点:

会列一元二次方程解关于增长率问题的应用题。

学习难点:

如何分析题意,找出等量关系,列方程。

学习过程:

一、 复习提问:

列一元二次方程解应用题的一般步骤是什么?

二、探索新知

1.情境导入

问题:“坡耕地退耕还林还草”是国家为了解决西部地区水土流失生态问题、帮助广大农民脱贫致富的一项战略措施,某村村长为带领全村群众自觉投入“坡耕地退耕还林还草”行动,率先示范.20__年将自家的坡耕地全部退耕,并于当年承包了30亩耕地的还林还草及管理任务,而实际完成的亩数比承包数增加的百分率为x,并保持这一增长率不变,20__年村长完成了36.3亩坡耕地还林还草任务,求①增长率x是多少?②该村有50户人家,每户均地村长20__年完成的亩数为准,国家按每亩耕地500斤粮食给予补助,则国家将对该村投入补助粮食多少万斤?

2.合作探究、师生互动

教师引导学生分析关于环保的情境导入问题,这是一个平均增长率问题,它的基数是30亩,平均增长的百分率为x,那么第一次增长后,即20__年实际完成的亩数是30(1+x),第二次增长后,即20__年实际完成的亩数是30(1+x)2,而这一年村长完成的亩数正好是36.3亩.

教师引导学生运用方程解决问题:

①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增长的百分率为10%.

②全村坡耕地还林还草为50×36.3=1 815(亩),国家将补助粮食1 815×500=907 500(斤)=90.75(万斤).

三、例题学习

说明:题目中求平均每月增长的'百分率,直接设增长的百分率为x,好处在于计算简便且直接得出所求。

例、某产品原来每件是600元,由于连续两次降价,现价为384元,如果两降价的百分率相同,求每次降价百分之几?

(小组合作交流教师点拨)

时间 基数 降价 降价后价钱

第一次 600 600x 600(1-x)

第二次 600(1-x) 600(1-x)x 600(1-x)2

(由学生写出解答过程)

四、巩固练习

一商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)?

五、课堂总结:

1、善于将实际问题转化为数学问题,严格审题,弄清各数据间相互关系,正确列出方程。

2、注意解方程中的巧算和方程两个根的取舍问题。

六、反馈练习:

1.某商品计划经过两个月的时间将售价提高20%,设每月平均增长率为x,则列出的方程为()

A.x+(1+x)x=20% B.(1+x)2=20%

C.(1+x)2=1.2 D.(1+x%)2=1+20%

2.某工厂计划两年内降低成本36%,则平均每年降低成本的百分率是()

3.某种药剂原售价为4元,经过两次降价,现在每瓶售价为2.56元,问平均每次降低百分之几?

一元二次方程数学教案【篇2】

学习目标

1、一元二次方程的求根公式的推导

2、会用求根公式解一元二次方程。

3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯。

学习重、难点

重点:一元二次方程的求根公式。

难点:求根公式的条件:b2 -4ac≥0

学习过程:

一、自学质疑:

1、用配方法解方程:2x2—7x+3=0。

2、用配方解一元二次方程的步骤是什么?

3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?

二、交流展示:

刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的'基本步骤解方程ax2+bx+c=0(a≠0)呢?

三、互动探究:

一般地,对于一元二次方程ax2+bx+c=0

(a≠0),当b2—4ac≥0时,它的根是

用求根公式解一元二次方程的方法称为公式法

由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的。因此,在解一元二次方程时,先将方程化为一般形式,然后在b2—4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根。

注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号。

(2)在运用求根公式求解时,应先计算b2—4ac的值;当b2—4ac≥0时,可以用公式求出两个不相等的实数解;当b2—4ac<0时,方程没有实数解。就不必再代入公式计算了。

四、精讲点拨:

例1、课本例题

总结:其一般步骤是:

(1)把方程化为一般形式,进而确定a、b,c的值。(注意符号)

(2)求出b2—4ac的值。(先判别方程是否有根)

(3)在b2—4ac≥0的前提下,把a、b、c的直代入求根公式,求出 的值,最后写出方程的根。

例2、解方程:

(1)2x2—7x+3=0 (2) x2—7x—1=0

(3) 2x2—9x+8=0 (4) 9x2+6x+1=0

五、纠正反馈:

做书上第P90练习。

六、迁移应用:

例3、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长。

例4、求方程 的两根之和以及两根之积。

一元二次方程数学教案【篇3】

1、自我介绍:30s

大家下午好!我叫__X,20__年毕业于暨南大学,学的行政管理,现在教的是初中数学,希望能与大家有一个愉快的下午!

2、一元二次方程概念、系数、根的判别式:8min30s

我们今天的课堂内容是复习一元二次方程。首先请同学们看黑板上的这4个等式,请判断等式是否是一元二次方程,如果是请说出该一元二次方程的二次项系数、一次项系数以及常数项:

(1)x -10x+9=0 是 1 -10 9

(2)x +2=0 是 1 0 2

(3)ax +bx+c=0 不是 a必须不等于0(追问为什么)

(4)3x -5x=3x 不是 整理式子得-5x=0所以为一元一次方程(追问为什么) 好,同学们都回答得非常好!那么我们所说的一元二次方程究竟是什么呢?我们从它的名字可以得出它的定义!

一元:只含一个未知数

二次:含未知数项的最高次数为2

方程:一个等式

一元二次方程的一般形式为:ax +bx+c=0 (a ≠0)其中,a 为二次项系数、b 为一次项系数、c 为常数项。记住,a 一定不为0,b 、c 都有可能等于0,一元二次方程的形式多种多样,所以大家要注意找系数时先将一元二次方程化为一般式! 至于一个一元二次方程有没有根怎么判断,有同学能告诉老师吗?(没有就自己讲),好非常好!我们知道Δ是等于2-4ac 的,当Δ>0时,方程有2个不相同的实数根;当Δ=0时,方程有两个相同的实数根;当Δ<0时,方程无实根。 那我们在求方程根之前先利用Δ判断一下根的情况,如果小于0,那么就直接判断无解,如果大于等于0,则需要进一步求方程根。

3、一元二次方程的解法:20min

那说到求方程的根我们究竟学了几种求一元二次方程根的方法呢?我知道同学们肯定心里有答案,就让老师为你们一一梳理~

(1)直接开方法

遇到形如x =n的二元一次方程,可以直接使用开方法来求解。若n <0,方程无解;若n=0,则x=0,若n >0, 则x=±n 。同学们能明白吗?

(2)配方法

大家觉得直接开平方好不好用?简不简单?那大家肯定都想用直接开方法来做题,是吧?当然,中考题简单也不至于这么简单~但是我们可以通过配方法来将方程往完全平方形式变化。配方法我们通过2道例题来巩固一下:

简单的一眼看出来的:x -2x+1=0 (x-1)=0(让同学回答)

需要变换的:2x +4x-8=0

步骤:将二次项系数化为1,左右同除2得:x +2x-4=0

将常数项移到等号右边得:x +2x=4

左右同时加上一次项系数一半的平方得:x +2x+1=4+1

所以有方程为:(x+1)=5 形似 x=n

然后用直接开平方解得x+1=±5 x=±5-1

大家能听懂吗?现在我们一起来做一道练习题,2min 时间,大家一起报个答案给我!

题目:1/2x-5x-1=0 答案:x=±+5

大家都会做吗?还需要讲解详细步骤吗?

(3)讲完了直接开方法、配方法之后我们来讲一个万能的公式法。只要知道abc ,没有公式法求不出来的解,当然啦,除非是无解~

首先,公式法里面的公式大家还记得吗?

x=(-b ±2-4ac )/2a

这个公式是怎么来的呢?有同学知道的吗?就是将一般式配方法得到的x 的表达式,大家记住,会用就可以了,如果有兴趣可以课后试着用配方法进行推导,也欢迎课后找我探讨~这个公式法用起来非常简单,一找数、二代入、三化简。 我们来做一道简单的例题:

3x -2x-4=0

其中a=3,b=-2,c=-4

带入公式得:x=((-(-2))± 2) 2-4x(-4)x3/(2x3)

化简得:x1=(1-)/3 x2=(1+)/3

同学们你们解对了吗?

使用公式法时要注意的点:系数的符号要看准、代入和化简要细心,不要马失前蹄哈~

(4)今天的第四种解方程的方法叫因式分解法。因式分解大家会吗?好那今天由我来带大家一起见识一下因式分解的魅力!

简单来说,因式分解就是将多项式化为式子的乘积形式。

比如说ab+ab 可以化成ab (1+a)的乘积形式。

那么对于二元一次方程,我们的目标是要将其化成(mx+a)x(nx+b)=0 这样就可以解出x=-a/m x=-b/n

我们一起做一个例题巩固一下:4x +5x+1=0

则可以化成4x +x+4x+1=0 x(4x+1)+(4x+1)=0 (x+1)(4x+1)=0

所以有x=-1 x=-1/4

同学们都能明白吗?就是找出公因式,将多项式化为因式的乘积形式从而求解。 练习题:x -5x+6=0 x=2 x=3

x-9=0 x=3 x=-3

一元二次方程数学教案【篇4】

教学目标

1. 了解整式方程和一元二次方程的概念;

2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式,一元二次方程。

3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:

重点:一元二次方程的概念和它的一般形式。

难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。

教学建议:

1. 教材分析:

1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。

2)重点、难点分析

理解一元二次方程的定义:

是一元二次方程 的重要组成部分。方程 ,只有当 时,才叫做一元二次方程。如果 且 ,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:

(1)一元二次方程的条件是确定的,如方程 ( ),把它化成一般形式为 ,由于 ,所以 ,符合一元二次方程的定义。

(2)条件是用“关于 的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于 的一元二次方程 ”,这时题中隐含了 的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的 项,且出现“关于 的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于 的方程 ”,这就有两种可能,当 时,它是一元一次方程 ;当 时,它是一元二次方程,解题时就会有不同的结果。

教学目的

1.了解整式方程和一元二次方程的概念;

2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学难点和难点:重点:

1.一元二次方程的有关概念

2.会把一元二次方程化成一般形式

难点: 一元二次方程的含义.

教学过程设计

一、引入新课

引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?

分析:1.要解决这个问题,就要求出铁片的长和宽。

2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。

3.让学生自己列出方程 ( x(x十5)=150 )

深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?

二、新课

1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)

2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)

3.强化一元二次方程的概念

下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?

(1)3x十2=5x—3:

(2)x2=4

(3)(x十3)(3x·4)=(x十2)2;

(4)(x—1)(x—2)=x2十8

从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。

4. 一元二次方程概念的延伸

提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?

引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式

ax2+bx+c=0 (a≠0)

1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.

3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。

强化概念(课本P6)

1.说出下列一元二次方程的二次项系数、一次项系数、常数项:

(1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0

(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。

2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

课堂小节

(1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);

(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;

(3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.

课外作业:略

一元二次方程数学教案【篇5】

【教学目标】

(1)理解一元二次方程的概念

(2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。

(2)会用因式分解法解一元二次方程

【教学重点】一元二次方程的.概念、一元二次方程的一般形式

【教学难点】因式分解法解一元二次方程

【教学过程】

(一)创设情景,引入新课

实际例子引入:列出的方程分别为X-7x+8=0,(X-7)(X+1)=89,X+8X-9=0

由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。

(二)新授

1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)

2:一元二次方程的一般形式(形如aX+bX+c=0)

任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零

3:讲解例子

4:利用因式分解法解一元二次方程

5:讲解例子

6:一般步骤

(三)小结

(四)布置作业