小学数学六年级教案优秀5篇
好好文库小编精心整理小学数学六年级教案,希望这份小学数学六年级教案优秀5篇能够帮助大家,给予大家在写作上的思路。更多小学数学六年级教案资料,在搜索框搜索
小学数学六年级教案精选篇1
数乘法应用题的结构特征及解法和方程知识的基础上进行学习的,在设计上有以下几个特点:
1.抓住解题关键。
教学中,选择解决问题所需的条件,抓住关键句,找准单位“1”,找准比较量及比较量对应单位“1”的几分之几,为画图分析做好准备。
2.直观分析问题。
教学中,把题中的已知条件和所求问题直观、形象地用线段图表示出来,并结合图示找出题中的等量关系。
3.顺向思考列式。
教学中,根据题中的等量关系,顺向思考,设未知量(单位“1”)为x,列方程解决问题。
4.明确解题规律。
教学中,引导学生通过分析、比较,找出分数乘、除法应用题的区别和联系,总结出解决分数应用题的一般规律,弄清当单位“1”的量未知时,可以用方程或算术方法解答这类实际问题。
课前准备
教师准备 PPT课件
学生准备 直尺
教学过程
复习铺垫
1.找出单位“1”并说出数量关系。
(1)已经行了全程的。(把全程看作单位“1”,全程×=已行路程)
(2)一个长方形,宽是长的。(把长看作单位“1”,长×=宽)
2.按要求解答。
课件出示:小明的体重是35kg,体内的水分占体重的,小明体内的水分是多少千克?
(1)读题,找出单位“1”及数量关系。
(把小明的体重看作单位“1”,小明体内水分的质量=小明的体重×)
(2)结合数量关系式,明确本题结构特征。(引导学生回答哪部分是已知的,哪部分是未知的)
(3)小组合作,列式解答。(结合学生的回答,引导学生归纳出此类题的解法:单位“1”已知,求它的几分之几是多少,用乘法计算)
35×=28(kg)
3.谈话导入。
分数乘法应用题的结构特征及解法我们已经掌握了,今天我们就来学习新知识,学习用方程法和算术法解决分数除法应用题。(板书课题)
设计意图:通过找单位“1”,说出数量关系,解答“求一个数的几分之几是多少”的乘法应用题,复习分数乘法应用题的结构特征及解题方法,为学习新知做准备。
探究新知
(一)“已知一个数的几分之几是多少,求这个数”的实际问题的解法。
1.课件出示教材37页例4。
(1)读题,交流信息。
根据测定,成人体内的水分约占体重的,儿童体内的水分约占体重的,小明体内有28kg水分。
(2)找出信息中存在的数量关系。(让学生分组分析、讨论、汇报,结合学生的回答,课件展示)
①成人体重×=成人体内水分的质量( HaoHaowenkU.CoM )
②儿童体重×=儿童体内水分的质量
③小明的体重×=小明体内水分的质量
2.探究解决问题的方法。
(1)课件出示例4的问题。
小明的体重是多少千克?
(2)解决问题。
①解决例4需要哪些条件?把谁看作单位“1”?
②画图分析。
小学数学六年级教案精选篇2
在前面的教材里,学生已经认识了条形统计图和折线统计图,能够利用这些统计图表示数据及变化态势;初步理解了平均数的意义,会求一组数据的平均数,能够应用平均数对数据进行分析、比较。本单元教学扇形统计图、众数和中位数,扇形统计图过去是选学内容,现在是基本的教学内容,而众数和中位数是根据《标准》的要求新增加的教学内容。扇形统计图能直观地表示出各个部分的数量分别是总数量的百分之几,众数和中位数都是统计量,在平均数不能有效地反映出一组数据的基本特点时,往往选用众数或中位数来表达数据的特点。因此,本单元的教学能进一步提高学生表示数据、分析数据的能力。教材编排了四道例题和两个练习,例1和练习十五主要教学扇形统计图的知识,例2至例4以及练习十六教学众数和中位数的知识。
1.以百分数的知识为基础,教学扇形统计图。
例1教学扇形统计图,分两步进行。第一步从整体到部分认识扇形统计图,让学生观察我国陆地地形分布情况统计图,体会图中的数据信息的具体含义,理解这张统计图用一个圆表示我国陆地的总面积,用五个扇形分别表示平原、盆地、高原、丘陵、山地各占国土总面积的百分之几。由于五种地形所占总面积的百分比不同,所以五个扇形的大小不同。教材及时指出,这样的统计图叫做扇形统计图,它能清楚地表示出各部分的数量与总数量之间的关系。经过这一步教学,学生知道扇形统计图与条形统计图、折线统计图相比,不仅形状不同,而且表达的数据内容也不相同。第二步根据已知的我国国土总面积,利用扇形统计图里的数据,分别算出五种地形的面积并填入统计表,进一步体会扇形统计图的特点。由于计算比较复杂,所以使用计算器。
教学扇形统计图,要理解图中的百分数的具体含义,并利用这些百分数进行相关的计算,不要求学生制作扇形统计图。练一练和练习十五根据教学要求,设计了两方面的练习内容。一是从统计图中各个扇形的大小以及表示的数据出发,进行分析与解释。如练一练第1题看图说出7月份哪项支出最多。第2题从我国的国土只占世界的7%,人口却占世界的22%,想到我国人均占有的土地比较少,人口密度很大。练习十五第1题通过对应数据的比较,判断哪天的食物搭配比较合理。二是看图估计或计算,如练习十五第2题根据拼盘里的花生米所占面积的百分比,估计其他干果各占面积的百分比。第3题分别计算我国四个海域的实际面积。
2.联系现实的素材,教学众数和中位数。
在一组数据中出现次数最多的那个数,是这组数据的众数。由于众数在一组数据中出现的频率最高,所以众数反映了这组数据的集中情况。教学众数,要让学生领会众数的意义,学会在一组数据中得出众数的方法。例2用表格呈现9个学生每人用20粒黄豆种子做发芽试验的结果,先看表在括号里填数,感受发芽17粒的人数最多,有5人。然后把9个数据依次排列,指出17出现的次数最多,是这组数据的众数。教学这一段内容,首先要形成正确的众数概念数据中出现次数最多的那个数。在发芽结果的数据中,17出现了5次,17是出现次数最多的数,5是它出现的次数,这组数据的众数是17,不是5。其次要知道求众数的方法在一组数据中寻找出现次数最多的那个数。不管这个数出现了几次,只要比其他数出现的次数多,它就是这组数据的众数。例题还要求计算这组数据的平均数,联系实际比较平均数和众数的意义,体会它们是两个不同的概念,进一步理解众数。
第79页练一练第1题通过找出一组学生的年龄的众数,巩固众数概念和求众数的方法。第2题在解决实际问题时应用了众数,鞋店上周销售皮鞋中,25.5cm这个尺码的皮鞋售出的双数最多,25.5是这组数据的众数,所以进货时要多一些这个尺码的男鞋。练习十六第1题配合例2的教学,男生身高的众数是153,女生身高的众数是148,10名男生里3人的身高是153厘米,10名女生里5人的身高是148厘米,所以说女生身高的众数更能反映这组学生的身高情况,即更具有代表性。这就是众数作为一种统计量,在描述一组数据特征时能起的作用。
一组数据按大小顺序排列,居于中间位置的那个数是这组数据的中位数。如果这组数据的个数是单数,那么中位数是正中间的那个数;如果这组数据的个数是双数,那么正中间的两个数的平均数才是这组数据的中位数。教材编排两道例题,分别教学这两种情况。
例3要求学生评价7号男生的跳绳成绩在这组同学中的位置,有的学生可能根据算出的平均每人跳117下,认为7号男生跳的比平均数少。有的学生可能把7号男生跳的下数与其他男生比较,得出他的成绩是第三名。这些都是学生利用原有的知识、经验进行的比较。为什么7号男生跳的下数比平均数少,成绩还是第三名?为了解决这个疑问,例题先教学中位数的知识,指出把这组数据按大小排列,正中间的一个数102是这组数据的中位数,既揭示了中位数的含义,又讲了求中位数的方法。再把7号男生的成绩与中位数比,看到尽管他跳的下数比平均数少,却比中位数大,在这9个男生中的名次还是比较靠前的,初步体会中位数与平均数是两个不同的统计量。例题还要学生思考为什么这组数据的平均数比中位数多得多,这是由于2号和8号男生的成绩十分突出,远远多于其他男生跳的下数,他俩的优异成绩使男生跳绳的平均数大了,而多数男生的跳绳成绩都低于这个水平。所以,如果一组数据里存在特别大或者特别小的极端数据,平均数往往不能准确地表达这组数据的整体状况,这时用中位数表示这组数据更合适。
例4求10个女生跳绳成绩的中位数,这组数据的个数是双数。教材指出,正中间有两个数,中位数是这两个数的平均数,并要求学生算出这组数据的中位数,学会求这种情况的中位数的方法。然后把各个女生的成绩分别与中位数比较,体会用中位数能评价每个数据在整体里的地位。
练一练的教学不能偏重于求平均数和中位数,要把时间用在第(2)、(3)两个问题的讨论上。9位同学家庭的住房面积中,有两个数据比其他数据小很多,所以平均数比中位数低得多,用中位数代表9个家庭的住房水平比较合适。练习十六第2题的数据中,A飞机的飞行时间只有8秒,比其他飞机少得多,一般用中位数表示这8架飞机的飞行水平。如果A飞机不飞,其他飞机的飞行时间虽然有多有少,但差距不是很大,所以平均数和中位数比较接近,都能代表这些飞机的飞行水平。第3题公司的经理、副经理的月工资比其他员工高出很多,教材让学生分别算出公司员工月工资的平均数、中位数和众数,体会平均数比中位数、众数大得多,应该用中位数或者用众数来反映这个公司的工资水平,进一步理解中位数与众数的实际应用。
小学数学六年级教案精选篇3
全册教材分析
教学内容:
理解百分数的意义,体会百分数与分数、小数的联系和区别,在具体情境中理解比例的意义和级别性质,认识成正比例和成反比例的量,让学生通过观察、操作、实验和简单推理,认识圆柱和圆锥的基本特征,探索并掌握圆柱和圆锥的体积公式以及圆柱表面积的计算方法;在具体的情境中,初步理解图形的放大和缩小,初步理解比例尺的意义,初步掌握用方向和距离确定物体位置的方法,并能应用这些知识和方法进行简单的操作或解决简单的实际问题。认识扇形统计图,初步体会扇形统计图描述数据的特点,能根据扇形统计图所呈现的信息提出或解决一些简单的问题;初步认识众数与中位数的意义。
教学目标:
知识与技能目标
1.让学生经历应用百分数的知识解决生活中一些常见问题的过程,进一步理解百分数的意义,体会百分数与分数、小数的联系和区别,加深对方程思想方法的认识,提高解决相关问题的能力;在具体情境中理解比例的意义和级别性质,认识成正比例和成反比例的量,体会不同领域数学内容的内在联系,加深对相关数量关系的理解。
2.让学生通过观察、操作、实验和简单推理,认识圆柱和圆锥的基本特征,探索并掌握圆柱和圆锥的体积公式以及圆柱表面积的计算方法;在具体的情境中,初步理解图形的放大和缩小,初步理解比例尺的意义,初步掌握用方向和距离确定物体位置的方法,并能应用这些知识和方法进行简单的操作或解决简单的实际问题。
3.让学生联系对百分数的理解,认识扇形统计图,初步体会扇形统计图描述数据的特点,能根据扇形统计图所呈现的信息提出或解决一些简单的问题;结合实例,初步认识众数与中位数的意义,会求一组简单数据的众数和中位数,初步体会众数、中位数和平均数等不同统计量的不同特点。
4.让学生通过系统复习,进一步掌握数与代数、空间和图形、统计和概率等领域的知识和方法,进一步明确相关内容的发展线索和逻辑关联,加深对现实问题中数量关系、空间形式和数据信息理解,提高综合应用数学知识和方法能力。
数学思考方面
1.让学生在应用百分数解决相关问题的过程中,进一步培养分析、综合和简单推理的能力,提高用方程表示数量关系的能力,发展抽象思维,增强数感。
2.让学生在认识圆柱和圆锥特征的过程中,丰富对现实空间的感知,进一步增强空间
观念;在推导圆柱和圆锥的体积公式以及探索圆柱侧面积和表面积的计算方法的过程中,经历观察、猜想、实验、分析、验证和概括等活动,进一步培养合情推理与初步的演绎推理能力,发展形象思维。
3.让学生在认识图形的放大和缩小、探索并理解比例的意义和性质,以及理解比例尺的意义和应用比例尺解决问题的过程中,进一步体会不同领域数学内容的内在联系,增强用数和图形描述现实问题意识和能力。
4.让学生在根据方向和距离确定物体位置的过程中,进一步培养观察能力、识图能力和有条理地继续表达的能力,不断增强空间观念。
5.让学生在探索并理解成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。
6.让学生在认识扇形统计图以及众数、中位数的过程中,进一步感受数据的意义和价值,感受不同统计量的联系和区别,发展统计观念。
7.让学生在系统复习的过程中,进一步体会知识间的联系和综合,加深对基本数学原理和方法的理解,培养比较、分析、综合、概括的能力,发展思维的整体性、灵活性和深刻性。
解决问题方面
1.让学生联系已有的知识和生活经验发现并提出一些数学问题,并主动用百分数、方程、正比例和反比例、圆柱和圆锥的体积公式、圆柱侧面积和表面积的计算方法、图形的放大和缩小、比例尺等数学知识和方法解决问题,进一步发展数学应用意识。
2.让学生在解决有关百分数、圆柱和圆锥体积计算、圆柱侧面积和表面积计算等实际问题的过程中,感受借助计算器解决问题的价值,进一步掌握分析和解决问题的基本方法,体会解决问题方法飞多样性。
3.让学生能用比例、比例尺、正比例和反比例等知识解决简单实际问题的过程中,体会数形结合的思想对于解决问题的价值,进一步积累和丰富解决问题的有效策略。
4.让学生在用方向和距离描述物体的位置,用扇形统计图和相关统计量解释数据信息、解答简单问题的过程中,进一步体会合作交流的重要性,提高合作交流的能力。
5.让学生在用转化的策略解决简单实际问题的过程中,进一步增强解决问题的策略意识和反思意识,培养根据所需解决问题的特点合理选择相应策略的自觉性和能力。
6、让学生在系统复习的过程中,进一步提高综合应用数学知识和方法解释日常生活现象、解释简单实际问题的水平,进一步用不同方式、从不同角度探索解决问题方法的能力,发展创新意识和实践能力。
情感态度方面
1.进一步感受数学思考的确定性和数学结论的严谨性,获得一些成功的体验,锻炼克服困难的意志。
2.进一步培养认真细心的学习习惯,培养发现错误及时订正的良好习惯。
3.进一步感受数学价值,感受数学与生活的密切联系,不断增强学数学、用数学的自觉性。
4.进一步了解有关数学知识的背景,体会数学的广泛应用,培养实事求是的科学态度和对社会的责任感。
5.进一步感受自己在数学知识和方法等方面的收获与进步,发展对数学的积极情感,进一步增强学好数学的信心。
教学重、难点
教学重点:百分数的应用、圆柱的侧面积和表面积的计算方法、圆柱和圆锥的体积计算方法、比例的意义和基本性质、正比例和反比例、扇形统计图、转化的解题策略以及总复习的四个板块的系列内容。
教学难点:圆柱和圆锥体积计算方法的推导、成正比例和反比例量的判断、用方向和距离确定位置、众数和中位数平均数、解题策略的灵活运用。
全册课时安排:全册共安排72课时的教学内容,其中30课时的总复习。
百分数的应用 11课时圆柱和圆锥11课时 比例7课时 确定位置4课时 正比例和反比例 4课时 解决问题的策略2课时 统计3课时 总复习 30课时
第一单元 百分数的应用
教学内容:
六年级(上册)“认识百分数”这个单元里,初步教学百分数的意义,用百分数描述部分与整体或两个同类数量间的倍数关系;教学了百分数与分数、小数的相互改写,解决简单的求一个数是另一个数的百分之几的问题。本单元在此基础上编排,通过应用百分数解决实际问题,进一步理解百分数的意义,体会百分数的广泛应用。
日常生活和生产劳动经常应用百分数,如用百分数表示一个数量比另一个数量多或少的关系,又如利息与纳税的计算、折扣的设计与计算等。应用百分数解决问题可以列式计算,也可以列方程解答。这些都是本单元的教学内容。
全单元的教学内容比较多,编排6道例题、四个练习以及全单元的整理与练习,大致分成五段教学。
例1、练习一,求一个数比另一个数多百分之几(或少百分之几)。这一段是接着六年级(上册)求简单的百分率编排的。
例2、例3、练习二,根据国家规定的税率和利率,计算应纳税金额和可得利息金额。这一段应用百分数的乘法解决实际问题。
例4、练习三,解决有关折扣的问题,包括设计折扣和根据折扣求现价或原价的问题。这一段里有列方程解题,也有列算式解题,列方程求原价是重点。
例5、例6练习四,列方程解决稍复杂的百分数问题或分数问题。在六年级(上册)“分数四则混合运算”里只教学稍复杂的求一个数的百分之几是多少的问题,已知一个数的百分之几是多少,求这个数的问题安排在本单元,由百分数问题带出。
“整理与练习”综合全单元的知识内容,进一步应用百分数解决实际问题。 教学目标:
1.以现实问题中百分数的意义为突破口,通过推理分析数量关系,探索算法。
2.把求一个数的几分之几是多少的经验,向求一个数的百分之几是多少迁移。
3.列方程解决已知一个数的百分之几是多少,求这个数的实际问题。
课时安排:百分数的应用 11课时
求一个数比另一个数多(少)百分之几的实际问题 2课时
纳税问题 1课时
利息问题 1课时
打折问题 2课时
列方程解决稍复杂的百分数应用题3课时
整理与练习 2课时
小学数学六年级教案精选篇4
教学目标:
1、在自主探索学习中理解按比分配的意义,掌握按比分配应用题的结构特点以及解题方法,能正确解答按比分配应用题。
2、培养学生分析问题、解决问题的能力。
3、创设民主和谐的学习氛围,在关注培养学生主动的探索意识的过程中形成积极的学习情感,通过对多种方法之间联系的探究,渗透数学的转化思想。
教学重点:进一步沟通倍数、份数、分数、比之间的本质联系,理解按比例分配应用题的结构特征和解题方法。
教学难点:运用按比分配的知识解决实际问题。
一、复习意义
1、六年级二班有30人,六年级三班有24人,你想到了什么?
预设: 30+24= 和 30—24= 差
30÷24= 倍数 比 30:24= 5:4
你们看,我们可以把一个分数转化成份数和比,看来分数、份数、比之间存在着紧密联系,它们可以相互转化。
二、 出示情景,设计分配方案。
1、学校为六年级二班、三班学生配备了课外书,已知二班有学生30人,三班有学生24人,你认为应怎样分配比较合理?
学生讨论分配方案
(1)预设:平均分。
按人数的多少分配比较合理
(2)讨论:你认为哪种方案更公平?
(3)按人数分,也就是按几比几分呢? 30:24
是最简比吗?
30∶24= 5∶4
【在日常生活中很多分配问题并不是平均分,常常需要把一个数量按照一定的比进行分配,这就是按比分配。】
板书课题:按比分配
2、出示例题:如果学校准备了这种儿童读物90本,二班和三班人数的比是5:4,
每个班级各应分配多少本?
3、学生试做。
要求:
(1)自己动笔试算,画出简单的分析图或用文字说明你的思路。
(2)想办法验算。
(3)组内交流你是怎么想的。
4、课堂反馈
预设:
① 5+4=9 90÷9×5=50 90÷9×4=40
说明:学生验证时可能出现,只是把结果相加得90,就认为是对的,遇到这种情况要组织学生讨论。
② 5+4=90 90×5/9=50 90×4/9=40
③ 90÷(1+4/5)=90×5/9=50 90-50=40
或 90÷(1+5/4)=90×4/9=40 90-40=50
5、沟通联系。
(1)比较两种解题思路有什么不同呢?
分别想一想,5/4、4/5、4/9等分数分别表示的什么关系?(小组讨论)
反馈:5/4、4/5表示的是两个班份数与份数之间的关系,4/9、5/9表示的是六(2)(3)班与总份数之间的关系,不管哪种方法都是求9份中的4份、5份是多少?
第一种算法实际上是把比转化成了份数,先算出1份数,再分别算出几份数,第二种算法实际上是把比转化成了分数,先找出各部分量分别占总量的几分之几,再用求一个数的几分之几是多少的方法进行计算。
三、巩固方法、完善认知。
1、我校合唱队共有学生48人,男,女生人数的比是1∶3,男生、女生各多少人?
2、用200立方厘米的橡皮泥捏等底等高的圆柱和圆锥各一个,捏之前怎么分配橡皮泥呢?圆柱、圆锥各需要橡皮泥多少立方厘米
3、上个月支出的3600元中,用于伙食费、还房贷和其他方面的钱数的比是5:4:3,伙食费和还房贷一共要用多少元?
A、3600×+3600× B、3600÷(5+4+3)×(5+4)
C、3600× D、3600÷
4、用长120厘米的铁丝做一个长方体的框架。长、宽、高的比是3:2:1。这个长方体的长、宽、高分别是多少?体积是多少?
5、世界三大饮料茶叶、咖啡和可可消费总量的 比是8∶12∶7 ,全世界茶消费总量大约是400万吨,其他两种饮料的消费量各是多少万吨?
【提示:先自己读一读题目。想一想此题与前几道题的区别。
【找准所给已知量与它相对应那个份数(分率)。】
作业:12周岁的儿童头部与以下部分的高度比一般是2:13回家测出你的身高,算算自己头部的长度,看看你估计得准不准。
四、谈谈这节课你的收获(数学思想等)。
板书设计:
按比分配
4+5=9 4+5=9
90÷9×5=50(本) 90×=50(本)
90÷9×4=40 (本) 90×=40(本)
答:六年级二班应分配50本,三班应分配40本。
小学数学六年级教案精选篇5
一、教学内容:
九年义务教育六年制第九册第二单元《倒数的认识》
二、教材分析:
“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。
三、教学目标:
1、理解倒数的意义,掌握求倒数的方法。
2、能熟练地写出一个数的倒数。
3、结合教学实际培养学生的抽象概括能力。
四、教学重点:
理解倒数的意义,掌握求倒数的方法。
五、教学难点:
熟练写出一个数的倒数。
六、教学过程:
(一)、谈话
1、交流
师:我们的黑板是什么颜色?
生:黑色。
师:教室的墙面又是什么颜色?
生:黑色。
师:黑与白在语文上是什么联系?
生:黑是白的反义词。
生:白是黑的反义词。
师:能说黑是反义词或白是反义词吗?
生:不能,因为黑与白是相互依存的联系。必须说清楚谁是谁的反义词。
师:那么,数学上有没有相互依存联系的现象呢?
生:约数和倍数。
师:你能举例说明约数和倍数的相互依存联系吗?
生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。
2、导入今天,我们继续来研究数学中具有相互依存联系的现象的有关知识。
(二)、学习新知
对数游戏
1、学习倒数的意义
我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4说一个数,同学们跟着根据3和4说一个数。
师:4是3的4/3,
生:3是4的3/4
师:7是15的7/15;生:15是7的15/7。
……
提问;看我们做游戏的结果,你们有没有发现什么?
生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。
生2:两个分数的分子、分母相互调换了位置。
生2:两个分数的乘积是1。
提问:像符合这种规律的两个数叫做什么数呢?谁能给这种数取个名字。(倒数)出示课题:倒数的认识
提问:那么怎样的两个数才是互为倒数呢?指导看书。
思考:(1)什么是倒数?满足什么条件的两个数互为倒数?
(2)你能找出互为倒数的两个数吗。请举例
评析:回答问题
理解“互为”的意义。怎样的两个数互为倒数。
找朋友游戏(课前每位同学发一张数字卡片)
练习出示卡片(六位同学举着卡片依次站在黑板前)
7/9 11/4 1/50 8 6/5 99
(2)规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队
提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?
3教学求一个数倒数的方法
出示例题:找出下列各数的倒数
2/3 7/4 1/5 9 1/7/8 0、4
小组讨论指名板演
提问:1、你是怎么找出2/3的倒数的?
生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3
生2:因为互为倒数的两个数的分子与分母正好调换位置。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 。
2、你是怎么找出7/4的倒数的?
……
提问:我们怎样才能很快地找到一个数的倒数?为什么?
4、练习请剩下的没有找到朋友的同学继续找倒数
5、讨论:1的倒数是谁?0的倒数呢?
生:1的倒数是1
师:能说明一下理由吗?
生1:因为1与1的乘积还是1。
生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。
师:0的倒数呢?
生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。
生2:因为0与任何数相乘都得0,所以0的倒数是任何数。
生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。
生4:0可以写成0/1,0/1的倒数是1/0。
生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。
6、完善求一个数的倒数的方法
(三)巩固练习
填空
1、因为5/3_3/5=1,所以()和()互为();
2、因为15_1/15=1,所以()和()互为();
3、4/7与()互为倒数;
4、()的倒数是6/11
5、()的倒数是2
6、1/8的倒数是()
7、1/2/7的倒数是()
8、0、3的倒数是()
判断
1、得数是1的两个数互为倒数。()
2、互为倒数的两个数乘积必定是1。()
3、 1的倒数是1,所以0的倒数是0 。()
4、分数的倒数都大于1。()
思考
4/5_()=()_8
(四)总结:今天我们学习了什么知识?你有什么收获?还有什么问题吗?
(五)布置作业